40 research outputs found

    Diseño e implementación de nuevas tecnologías basadas en visión artificial para la inspección no destructiva de la calidad de fruta en campo y mínimamente procesada

    Full text link
    Esta tesis trata de avanzar en sistemas de visión por computador aplicados a la inspección automática de la calidad de frutas y verduras en dos entornos en los que hasta la fecha no se ha trabajado en profundidad como son la inspección en campo antes de la recepción de la fruta por la central hortofrutícola y la inspección automática de la calidad de fruta procesada. Se pretende así rellenar un hueco importante en la aplicación de la visión por computador como una herramienta al servicio del sector en la inspección de frutas y verduras. El desarrollo de técnicas de visión por computador en la inspección de la calidad de los productos agrícolas se debe a la necesidad de encontrar una alternativa a los métodos de inspección manual tradicionales para eliminar el contacto con el producto, aumentar la fiabilidad y objetividad, introducir flexibilidad a las líneas de confección e incrementar la productividad y competitividad de nuestras empresas. Esta tecnología está ampliamente extendida para la inspección de fruta en fresco en almacenes de confección pero, sin embargo, todavía no se ha aplicado en campo por las dificultades técnicas que conlleva este entorno, y tampoco en el sector de la fruta mínimamente procesada, debido a la fragilidad y dificultad de manipulación del producto, la complejidad de la inspección y el relativo menor valor económico respecto de la fruta en fresco. En esta tesis se aborda, por una parte, la creación de un sistema de visión por computador instalado en una plataforma de asistencia a la recolección de cítricos sobre la que se analiza la fruta a la vez que se recolecta y se clasifica en diversas categorías en función de su color, tamaño o calidad (presencia de defectos externos). Los mayores problemas del trabajo en campo se refieren a una iluminación inestable, movimientos y vibraciones, energía eléctrica limitada o efectos de la intemperie. Para ello es necesario diseñar un sistema de visión por computador compacto, robusto, rápido y muy efiCubero García, S. (2012). Diseño e implementación de nuevas tecnologías basadas en visión artificial para la inspección no destructiva de la calidad de fruta en campo y mínimamente procesada [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15999Palanci

    Nuevas tecnologías para la preselección automática de cítricos en el campo

    Full text link
    El trabajo de esta tesina aborda el desarrollo de un sistema de inspección automática para el análisis de la calidad de los cítricos en línea mediante visión por computador. Este sistema debe ser capaz de inspeccionar y clasificar la fruta en tiempo real en tres categorías diferentes, trabajando en condiciones de campo sobre una maquina en movimiento, atendiendo a parámetros de color y a estimaciones sobre la presencia de daños en su piel extraídas a partir del análisis de las imágenes.Cubero García, S. (2009). Nuevas tecnologías para la preselección automática de cítricos en el campo. Universitat Politècnica de València. http://hdl.handle.net/10251/59047Archivo delegad

    Xf-Rovim. A Field Robot to Detect Olive Trees Infected by Xylella Fastidiosa Using Proximal Sensing

    Full text link
    [EN] The use of remote sensing to map the distribution of plant diseases has evolved considerably over the last three decades and can be performed at different scales, depending on the area to be monitored, as well as the spatial and spectral resolution required. This work describes the development of a small low-cost field robot (Remotely Operated Vehicle for Infection Monitoring in orchards, XF-ROVIM), which is intended to be a flexible solution for early detection of Xylella fastidiosa (X. fastidiosa) in olive groves at plant to leaf level. The robot is remotely driven and fitted with different sensing equipment to capture thermal, spectral and structural information about the plants. Taking into account the height of the olive trees inspected, the design includes a platform that can raise the cameras to adapt the height of the sensors to a maximum of 200 cm. The robot was tested in an olive grove (4 ha) potentially infected by X. fastidiosa in the region of Apulia, southern Italy. The tests were focused on investigating the reliability of the mechanical and electronic solutions developed as well as the capability of the sensors to obtain accurate data. The four sides of all trees in the crop were inspected by travelling along the rows in both directions, showing that it could be easily adaptable to other crops. XF-ROVIM was capable of inspecting the whole field continuously, capturing geolocated spectral information and the structure of the trees for later comparison with the in situ observations.This work was partially supported by funding from the European Union's Horizon 2020 research and innovation programme under grant agreement 727987 Xylella Fastidiosa Active Containment Through a multidisciplinary-Oriented Research Strategy (XF-ACTORS).Rey, B.; Aleixos Borrás, MN.; Cubero-García, S.; Blasco Ivars, J. (2019). Xf-Rovim. A Field Robot to Detect Olive Trees Infected by Xylella Fastidiosa Using Proximal Sensing. Remote Sensing. 11(3). https://doi.org/10.3390/rs11030221113Martelli, G. P., Boscia, D., Porcelli, F., & Saponari, M. (2015). The olive quick decline syndrome in south-east Italy: a threatening phytosanitary emergency. European Journal of Plant Pathology, 144(2), 235-243. doi:10.1007/s10658-015-0784-7Olmo, D., Nieto, A., Adrover, F., Urbano, A., Beidas, O., Juan, A., … Landa, B. B. (2017). First Detection of Xylella fastidiosa Infecting Cherry (Prunus avium) and Polygala myrtifolia Plants, in Mallorca Island, Spain. Plant Disease, 101(10), 1820-1820. doi:10.1094/pdis-04-17-0590-pdnSaponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D., & Saldarelli, P. (2019). Xylella fastidiosa in Olive in Apulia: Where We Stand. Phytopathology®, 109(2), 175-186. doi:10.1094/phyto-08-18-0319-fiVergara-Díaz, O., Zaman-Allah, M. A., Masuka, B., Hornero, A., Zarco-Tejada, P., Prasanna, B. M., … Araus, J. L. (2016). A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00666Thenkabail, P. S., & Lyon, J. G. (Eds.). (2016). Hyperspectral Remote Sensing of Vegetation. doi:10.1201/b11222Calderón, R., Navas-Cortés, J. A., Lucena, C., & Zarco-Tejada, P. J. (2013). High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sensing of Environment, 139, 231-245. doi:10.1016/j.rse.2013.07.031Gonzalez-Dugo, V., Hernandez, P., Solis, I., & Zarco-Tejada, P. (2015). Using High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping. Remote Sensing, 7(10), 13586-13605. doi:10.3390/rs71013586Hernández-Clemente, R., Navarro-Cerrillo, R., Ramírez, F., Hornero, A., & Zarco-Tejada, P. (2014). A Novel Methodology to Estimate Single-Tree Biophysical Parameters from 3D Digital Imagery Compared to Aerial Laser Scanner Data. Remote Sensing, 6(11), 11627-11648. doi:10.3390/rs61111627Colaço, A. F., Molin, J. P., Rosell-Polo, J. R., & Escolà, A. (2018). Application of light detection and ranging and ultrasonic sensors to high-throughput phenotyping and precision horticulture: current status and challenges. Horticulture Research, 5(1). doi:10.1038/s41438-018-0043-0Ma, Q., Su, Y., Luo, L., Li, L., Kelly, M., & Guo, Q. (2018). Evaluating the uncertainty of Landsat-derived vegetation indices in quantifying forest fuel treatments using bi-temporal LiDAR data. Ecological Indicators, 95, 298-310. doi:10.1016/j.ecolind.2018.07.050Ma, Q., Su, Y., & Guo, Q. (2017). Comparison of Canopy Cover Estimations From Airborne LiDAR, Aerial Imagery, and Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(9), 4225-4236. doi:10.1109/jstars.2017.2711482Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., … Dandekar, A. M. (2014). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35(1), 1-25. doi:10.1007/s13593-014-0246-1Calderón, R., Navas-Cortés, J., & Zarco-Tejada, P. (2015). Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas. Remote Sensing, 7(5), 5584-5610. doi:10.3390/rs70505584Zarco-Tejada, P. J., Camino, C., Beck, P. S. A., Calderon, R., Hornero, A., Hernández-Clemente, R., … Navas-Cortes, J. A. (2018). Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4(7), 432-439. doi:10.1038/s41477-018-0189-7Aasen, H., Honkavaara, E., Lucieer, A., & Zarco-Tejada, P. (2018). Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sensing, 10(7), 1091. doi:10.3390/rs10071091Vicent, A., & Blasco, J. (2017). When prevention fails. Towards more efficient strategies for plant disease eradication. New Phytologist, 214(3), 905-908. doi:10.1111/nph.14555Wang, X., Singh, D., Marla, S., Morris, G., & Poland, J. (2018). Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods, 14(1). doi:10.1186/s13007-018-0324-5Bourgeon, M. A., Gée, C., Debuisson, S., Villette, S., Jones, G., & Paoli, J. N. (2016). « On-the-go » multispectral imaging system to characterize the development of vineyard foliage with quantitative and qualitative vegetation indices. Precision Agriculture, 18(3), 293-308. doi:10.1007/s11119-016-9489-yUnderwood, J. P., Hung, C., Whelan, B., & Sukkarieh, S. (2016). Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. Computers and Electronics in Agriculture, 130, 83-96. doi:10.1016/j.compag.2016.09.014Zampetti, E., Papa, P., Di Flaviano, F., Paciucci, L., Petracchini, F., Pirrone, N., … Macagnano, A. (2017). Remotely Controlled Terrestrial Vehicle Integrated Sensory System for Environmental Monitoring. Sensors, 338-343. doi:10.1007/978-3-319-55077-0_43Hiremath, S. A., van der Heijden, G. W. A. M., van Evert, F. K., Stein, A., & ter Braak, C. J. F. (2014). Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers and Electronics in Agriculture, 100, 41-50. doi:10.1016/j.compag.2013.10.005Pérez-Ruiz, M., Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Peruzzi, A., Vieri, M., … Agüera, J. (2015). Highlights and preliminary results for autonomous crop protection. Computers and Electronics in Agriculture, 110, 150-161. doi:10.1016/j.compag.2014.11.010Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., & Coppin, P. (2004). Review of methods for in situ leaf area index (LAI) determination. Agricultural and Forest Meteorology, 121(1-2), 37-53. doi:10.1016/j.agrformet.2003.08.001Hosoi, F., & Omasa, K. (2006). Voxel-Based 3-D Modeling of Individual Trees for Estimating Leaf Area Density Using High-Resolution Portable Scanning Lidar. IEEE Transactions on Geoscience and Remote Sensing, 44(12), 3610-3618. doi:10.1109/tgrs.2006.881743Stein, M., Bargoti, S., & Underwood, J. (2016). Image Based Mango Fruit Detection, Localisation and Yield Estimation Using Multiple View Geometry. Sensors, 16(11), 1915. doi:10.3390/s16111915Saponari, M., Boscia, D., Altamura, G., Loconsole, G., Zicca, S., D’Attoma, G., … Martelli, G. P. (2017). Isolation and pathogenicity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy. Scientific Reports, 7(1). doi:10.1038/s41598-017-17957-

    VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits

    Full text link
    [EN] In this work an N-way partial least squares regression discriminant analysis (NPLS-DA) methodology is developed to detect symptoms of disease caused by Penicillium digitatum in citrus fruits (green mould) using visible/near infrared (VIS/NIR) hyperspectral images. To build the discriminant model a set of oranges and mandarins was infected by the fungus and another set was infiltrated just with water for control purposes. A double cross-validation strategy is used to validate the discriminant models. Finally, permutation testing is used to select a few bands offering the best correct classification rates in the validation set. The discriminant models developed here can be potentially implemented in a fruit packinghouse to detect infected citrus fruits at their arrival from the field with affordable multispectral (3 5 channels) cameras installed in the packinglines.This research was partially funded by the Spanish Ministry of Science and Innovation through grants DPI2011-28112-C04-02 and DPI2014-55276-C05-1R, and by INIA through grant RTA2012-00062-C04-01. In all cases with the support of European FEDER funds. Authors thank Lluis Palou from the Centro de Tecnologia Postcosecha at the IVIA for the help and supervision in the innoculation process of the fruits.Folch Fortuny, A.; Prats-Montalbán, JM.; Cubero-García, S.; Blasco Ivars, J.; Ferrer, A. (2016). VIS/NIR hyperspectral imaging and N-way PLS-DA models for detection of decay lesions in citrus fruits. Chemometrics and Intelligent Laboratory Systems. 156:241-248. https://doi.org/10.1016/j.chemolab.2016.05.005S24124815

    Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images

    Full text link
    [EN] In polyethylene terephthalate's (PET)'s recycling processes, separation from polyvinyl chloride (PVC) is of prior relevance due to its toxicity, which degrades the final quality of recycled PET. Moreover, the potential presence of some polymers in mixed plastics (such as PVC in PET) is a key aspect for the use of recycled plastic in products such as medical equipment, toys, or food packaging. Many works have dealt with plastic classification by hyperspectral imaging, although only some of them have been directly focused on PET sorting and very few on its separation from PVC. These works use different classification models and preprocessing techniques and show their performance for the problem at hand. However, still, there is a lack of methodology to address the goal of comparing and finding the best model and preprocessing technique. Thus, this paper presents a design of experiments-based methodology for comparing and selecting, for the problem at hand, the best preprocessing technique, and the best latent variable-based and/or artificial intelligence classification method, when using NIR hyperspectral images. There is a lack of methodology to address the goal of comparing and finding the best model and preprocessing technique. Thus, this paper presents a design of experiments-based methodology for comparing and selecting, for the problem at hand, the best preprocessing technique, and the best latent variable-based and/or artificial intelligence classification method when using near-infrared hyperspectral images.Universitat Politecnica de Valencia, Grant/Award Number: UPV-FE-16-B18This research was partially supported by the Universitat Politècnica de València under the project UPV‐FE‐16‐B18.Galdón-Navarro, B.; Prats-Montalbán, JM.; Cubero-García, S.; Blasco Ivars, J.; Ferrer, A. (2018). Comparison of latent variable-based and artificial intelligence methods for impurity detection in PET recycling from NIR hyperspectral images. Journal of Chemometrics. 32(1):1-14. https://doi.org/10.1002/cem.2980S11432

    In-line Application of Visible and Near-Infrared Diffuse Reflectance Spectroscopy to Identify Apple Varieties

    Full text link
    [EN] One of the most studied techniques for the non-destructive determination of the internal quality of fruits has been visible and nearinfrared (VIS-NIR) reflectance spectroscopy. This work evaluates a new non-destructive in-line VIS-NIR spectroscopy prototype for in-line identification of five apple varieties, with the advantage that it allows the spectra to be captured with the probe at the same distance from all the fruits regardless of their size. The prototype was tested using varieties with a similar appearance by acquiring the diffuse reflectance spectrum of the fruits travelling on the conveyor belt at a speed of 0.81 m/s which is nearly 1 fruit/s. Principal component analysis (PCA) was used to determine the variables that explain the most variance in the spectra. Seven principal components were then used to perform linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). QDA was found to be the best in-line classification method, achieving 98% and 85% success rates for red and yellow apple varieties, respectively. The results indicated that the in-line application of VIS-NIR spectroscopy that was developed is potentially feasible for the detection of apple varieties with an accuracy that is similar to or better than a laboratory system.This work was partially funded by the Generalitat Valenciana through project AICO/2015/122 and by INIA and FEDER funds through project RTA2015-00078-00-00. Victoria Cortes Lopez thanks the Spanish Ministry of Education, Culture and Sports for FPU grant (FPU13/04202).Cortes-Lopez, V.; Cubero-García, S.; Blasco Ivars, J.; Aleixos Borrás, MN.; Talens Oliag, P. (2019). In-line Application of Visible and Near-Infrared Diffuse Reflectance Spectroscopy to Identify Apple Varieties. Food and Bioprocess Technology. 12(6):1021-1030. https://doi.org/10.1007/s11947-019-02268-0S10211030126Aleixandre-Tudo, J. L., Nieuwoudt, H., & du Toit, W. (2019). Towards on-line monitoring of phenolic content in red wine grapes: a feasibility study. Food Chemistry, 270, 322–331.Alonso, J., Artigas, J., & Jimenez, C. (2003). Analysis and identification of several apple varieties using ISFETs sensors. Talanta, 59(6), 1245–1252.Beebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). In: Chemometrics: a practical guide, New York. USA: John Wiley and Sons.Beghi, R., Giovenzana, V., Brancadoro, L., & Guidetti, R. (2017). Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy. Journal of Food Engineering, 204, 46–54.Brunt, K., Smits, B., & Holthuis, H. (2010). Design, construction, and testing of an automated NIR in-line analysis system for potatoes. Part II. Development and testin of the automated semi-industrial system with in-line NIR for the characterization of potatoes. Potato Research, 53(1), 41–60.Bruun, S. W., Sondergaard, I., & Jacobsen, S. (2007). Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder. Journal of Agricultural and Food Chemistry, 55(18), 7234–7243.Carr, G. L., Chubar, O., & Dumas, P. (2005). Spectrochemical analysis using infrared multichannel detectors. In R. Bhargava & I. W. Levin (Eds.), 1st ed (pp. 56–84). Oxford: Wiley-Blackwell.Casale, M., Casolino, C., Ferrari, G., & Forina, M. (2008). Near infrared spectroscopy and class modelling techniques for geographical authentication of Ligurian extra virgin olive oil. Journal of Near Infrared Spectroscopy, 16(1), 39–47.Cortés, V., Ortiz, C., Aleixos, N., Blasco, J., Cubero, S., & Talens, P. (2016). A new internal quality index for mango and its prediction by external visible and near infrared reflection spectroscopy. Postharvest Biology and Technology, 118, 148–158.Fernández-Ahumada, E., Garrido-Varo, A., Guerrero-Ginel, A. E., Wubbels, A., van der Sluis, C., & van der Meer, J. M. (2006). Understanding factors affecting near infrared analysis of potato constituents. Journal of Near Infrared Spectroscopy, 14(1), 27–35.He, Y., Li, X., & Shao, Y. (2007). Fast discrimination of apple varieties using Vis/NIR spectroscopy. International Journal of Food Properties, 10(1), 9–18.Hernández, A., He, Y., & García, A. (2006). Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77, 313–319.Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. Journal of Food Engineering, 87(3), 303–313.James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: with applications in R. New York: springer.Jie, D., Xie, L., Rao, X., & Ying, Y. (2014). Using visible and near infrared diffuse transmittance technique to predict soluble solids content of watermelon in an on-line detection system. Postharvest Biology and Technology, 90, 1–6.Kader, A. A., Kasmire, R. F., Mitchell, F. G., Reid, M. S., Sommer, N. F., & Thompson, J. F. (1985). Postharvest technology of horticultural crops (Special publication, mum. 3311, p. 192). Davis: Cooperative Extension, University of California.Kozak, M., & Scaman, C. H. (2008). Unsupervised classification methods in food sciences: discussion and outlook. Journal of the Science of Food and Agriculture, 88(7), 1115–1127.Lammertyn, J., De Baerdemaeker, J., & Nicolaï, B. (2000). Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biology and Technology, 18(2), 121–132.Liu, F., Jiang, Y., & He, Y. (2009). Variable selection in visible/near infrared spectra for linear and nonlinear calibrations: a case study to determine soluble solids content of beer. Analytica Chimica Acta, 635(1), 45–52.López, A. F. (2003). ‘Manual para la preparación y venta de frutas y hortalizas, del campo al mercado’. PDF File: Boletín de servicios agrícolas de la FAO, 151. http://www.fao.org/tempref/docrep/fao/006/y4893S/y4893S00.pdf . Accessed 20 Aug 2018.Lorente, D., Escandell-Montero, P., Cubero, S., Gómez-Sanchis, J., & Blasco, J. (2015). Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. Journal of Food Engineering, 163, 17–21.Luo, W., Huan, S., Fu, H., Wen, G., Cheng, H., Zhou, J., Wu, H., Shen, G., & Yu, R. (2011). Preliminary study on the application of near infrared spectroscopy and pattern recognition methods to classify different types of apples. Food Chemistry, 128(2), 555–561.Marrazzo, W. N., Heinemann, P. H., Crassweller, R. E., & LeBlanc, E. (2005). Electronic nose chemical sensor feasibility study for the differentiation of apple cultivars. American Society of Agricultural Engineers, 48(5), 1995–2002.Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75(3), 394–404.Næs, T., Isaksson, T., Fearn, T., & Davies, T. (2002). A user-friendly guide to multivariate calibration and classification. Chichester: NIR Publications.Rodríguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44(1), 250–258.Ronald, M., & Evans, M. (2016). Classification of selected apple fruit varieties using Naive Bayes. Indian Journal of Computer Science and Engineering, 7(1), 13–19.Sabanci, K., & Ünlersen, M. F. (2016). Different apple varieties classification using kNN and MLP algorithms. International Journal of Intelligent Systems and Applications in Engineering, 4(1), 166–169.Sádecká, J., Jakubíková, M., Májek, P., & Kleinová, A. (2016). Classification of plum spirit drinks by synchronous fluorescence spectroscopy. Food Chemistry, 196, 783–790.Salguero-Chaparro, L., Baeten, V., Abbas, O., & Peña-Rodríguez, F. (2012). On-line analysis of intact olive fruits by vis-NIR spectroscopy: optimisation of the acquisition parameters. Journal of Food Engineering, 112(3), 152–157.Santos, P., Santos, F., Santos, J., & Bezerra, H. (2013). Application of extended multiplicative signal correction to short-wavelength near infrared spectra of moisture in marzipan. Journal of Data Analysis and Information Processing, 1(03), 30–34.Shang, L., Guo, W., & Nelson, S. O. (2015). Apple variety identification based on dielectric spectra and chemometric methods. Food Anal. Methods, 8(4), 1042–1052.Shao, Y., He, Y., Gómez, A. H., Pereir, A. G., Qiu, Z., & Zhang, Y. (2007). Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’ (Lycopersicumesculentum) quality characteristics. Journal of Food Engineering, 81(4), 672–678.Shenderey, C., Shmulevich, I., Alchanatis, V., Egozi, H., Hoffman, A., Ostrovsky, V., Lurie, S., Arie, R. B., & Schmilovitch, Z. (2010). NIRS detection of moldy core in apples. Food Bioprocess Technology, 3(1), 79–86.Soares, S. F. C., Gomes, A. A., Galvão Filho, A. R., Araújo, M. C. U., & Galvão, R. K. H. (2013). The successive projections algorithm. Trends in Analytical Chemistry, 42, 84–98.Song, W., Wang, H., Maguire, P., & Nibouche, O. (2017). Differentiation of organic and non-organic apples using near infrared reflectance apectroscopy – a pattern recognition approach. In Unknown host publication (pp. 1–3). https://doi.org/10.1109/ICSENS.2016.7808530 .Sun, X., Liu, Y., Li, Y., Wu, M., & Zhu, D. (2016). Simultaneous measurements of Brown core and soluble solids content in pear by on-line visible and near infrared spectroscopy. Postharvest Biology and Technology, 116, 80–87.Wojdyło, A., Oszmiański, J., & Laskowski, P. (2008). Polyphenolic compounds and antioxidant activity of new and old apple varieties. Journal of Agricultural and Food Chemistry, 56(15), 6520–6530.Wu, X., Wu, B., Sun, J., Li, M., & Du, H. (2016). Discrimination of apples using near infrared spectroscopy and sorting discriminant analysis. International Journal of Food Properties, 19(5), 1016–1028.Wu, X., Wu, B., Sun, J., & Yang, N. (2017). Classification of Apple varieties using near infrared reflectance spectroscopy and fuzzy discriminant C-Means clustering model. Journal of Food Process Engineering, 40, 1–7

    Visible and near-infrared diffuse reflectance spectroscopy for fast qualitative and quantitative assessment of nectarine quality

    Full text link
    [EN] Visible and near-infrared spectroscopy has been widely used as a non-invasive and rapid-assessment technique for the quality control of agricultural products. In this study, 325 samples of nectarines representing two commercial varieties, cv. 'Big Top' and cv. 'Magique', were analysed by visible and near-infrared diffuse reflectance spectroscopy (VIS-NIR). The spectral data were pre-treated and analysed to predict the internal quality of the samples and to discriminate between the two varieties. Good prediction of the internal quality of the samples, using partial least-squares regressions, was observed for both (R (2) (P) of 0.909 and 0.927 and RMSEP of 0.235 and 0.238 for cv. Big Top and Magique, respectively). Discriminant models, using linear discriminant and partial least-squares discriminant analyses, were built to classify the nectarines. Both methods provided good results with rates of 97.44 and 100% of correctly classified samples. The results indicated that visible and near-infrared techniques can be useful and simple methods for quality control and for the correct identification of nectarines in commercial lines as an alternative to the slower and less accurate manual classification.This work was partially funded by the Generalitat Valenciana through project AICO/2015/122 and by the INIA and FEDER funds through projects RTA2012-00062-C04-01 and 03, and RTA2015-00078-00-00. Victoria Lopez Cortes thanks the Spanish Ministry of Education, Culture and Sports for the FPU grant (FPU13/04202). The authors are also grateful to Fruits de Ponent (Lerida) for providing the fruit.Cortes-Lopez, V.; Blasco Ivars, J.; Aleixos Borrás, MN.; Cubero García, S.; Talens Oliag, P. (2017). Visible and near-infrared diffuse reflectance spectroscopy for fast qualitative and quantitative assessment of nectarine quality. Food and Bioprocess Technology. 10(10):1755-1766. https://doi.org/10.1007/s11947-017-1943-yS175517661010Bachion de Santana, F., Caixeta Gontijo, L., Mitsutake, H., Júnior Mazivilla, S., Maria de Souza, L., & Borges Neto, W. (2016). Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics. Food Chemistry, 209, 228–233.Bakeev, K. A. (2010). Process analytical technology. United Kingdom: Wiley.Bonany, J., Buehler, A., Carbó, J., Codarin, S., Donati, F., Echeverria, G., Egger, S., Guerra, W., Hilaire, C., Höller, I., Iglesias, I., Jesionkowska, K., Konopacka, D., Kruczynska, D., Martinelli, A., Pitiot, C., Sansavini, S., Stehr, R., & Schoorl, F. (2013). Consumer eating quality acceptance of new apple varieties in different European countries. Food Quality and Preference, 30, 250–259.Bruun, S. W., Sondergaard, I., & Jacobsen, S. (2007). Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder. Journal of Agricultural and Food Chemistry, 55, 7234–7243.Carlomagno, G., Capozzo, L., Attolico, G., & Distante, A. (2004). Non-destructive grading of peaches by near-infrared spectrometry. Infrared Physics & Technology, 46, 23–29.Carr, G. L, Chubar, O., Dumas, P. (2005). Multichannel detection with a synchrotron light source: Design and potential. Spectrochemical Analysis Using Multichannel Detectors Analytical Chemistry Series, edited by Bhargava P, Levin I. Chapter 3, (pp. 56–84). Oxford: Wiley-BlackwellCayuela, J. A., & Weiland, C. (2010). Intact orange quality prediction with two portable NIR spectrometers. Postharvest Biology and Technology, 58(2), 113–120.Clareton, M. (2000). Peach and nectarine production in France: trends, consumption and perspectives. Summaries Prunus Breeders Meeting. EMPRABA, Clima Temperado. Pelotas (RS) Brazil, November 29 to December 2000, pp. 83–91Cortés, V., Ortiz, C., Aleixos, N., Blasco, J., Cubero, S., & Talens, P. (2016). A new internal quality index for mango and its prediction by external visible and near infrared reflection spectroscopy. Postharvest Biology and Technology, 118, 148–158.Crisosto, C. H. (2002). How do we increase peach consumption? Proceedings of 5th International Symposium on Peach, ISHS. Acta Horticulturae, 592, 601–605.Crisosto, C., & Crisosto, G. (2005). Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid meeting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biology and Technology, 38, 239–246.Crisosto, C. H., Garner, D., Crisosto, G. M., Wiley, P., & Southwick, S. (1997). Evaluation of the minimum maturity index for new cherry cultivars growing in the San Joaquin Valley. Visalia: California Cherry Growers Association.Crisosto, C. H., Crisosto, G. M., & Ritenour, M. A. (2002). Testing the reliability of skin color as an indicator of quality for early season ‘Brooks’ (Prunus avium L.) cherry. Postharvest Biology and Technology, 24, 147–154.Crisosto, C. H., Crisosto, G. M., & Metheney, P. (2003). Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biology and Technology, 28, 159–167.Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4, 487–504.Cunha, L. C., Teixeira, G. H. A., Nardini, V., & Walsh, K. (2016). Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy. Postharvest Biology and Technology, 112, 64–74.Della Cara, R. (2005). In calo i consumi e l’export de pesche e nettarine italiane. Rivista di Frutticoltura, 7–8, 19–20.Downey, G. (1997). Authentication of food and food ingredients by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 4, 47–61.Eskin, N.A.M. & Hoehn, E. (2013). Fruits and vegetables. Eskin, N.A.M., Shahidi, F. (Eds.), Biochemistry of foods, 3rd edn. Amsterdam, The Netherlands: Elsevier Inc. pp. 49–126.Faber, N. M. (1999). Multivariate sensitivity for the interpretation of the effect of spectral pretreatment methods on near-infrared calibration model predictions. Analytical Chemistry, (71), 557–565.Fang, L., Li, H., Liu, Z., & Xian, X. (2013). Online evaluation of yellow peach quality by visible and near-infrared spectroscopy. Advance Journal of Food Science and Technology, 5(5), 606–612.Ferrer, P., Montesinos, J. L., Valero, F., & Solá, C. (2001). Production of native and recombinant lipases by Candida rugosa. Applied Biochemistry and Biotechnology, 95(3), 221–255.Font, D., Tresanchez, M., Pallejà, T., Teixidó, M., Martinez, D., Moreno, J., & Palacín, J. (2014). An image processing method for in-line nectarine variety verification based on the comparison of skin feature histogram vectors. Computers and Electronics in Agriculture, 102, 112–119.Fu, X., Yibin, Y., Lu, H., Xu, H., & Yu, H. (2007). FT-NIR diffuse reflectance spectroscopy for kiwifruit firmness detection. Sensing and Instrumentation for Food Quality and Safety, 1, 29–35.GenCat: Generalitat de Cataluña. 2013.Technical report 1/2011 and Technical Indicator A2. (accessed 13.05.13).Ghiani, A., Negrini, N., Morgutti, S., Baldin, F., Nocito, F. F., Spinardi, A., Mignani, I., Bassi, D., & Cocucci, M. (2011). Melting of ‘Big Top’ nectarine fruit: some physiological, biochemical, and molecular aspects. Journal of the American Society for Horticultural Science, 136, 61–68.Golic, M., & Walsh, K. B. (2006). Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content. Analytica Chimica Acta, 555(2), 286–291.Gorry, P. A. (1990). General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Analytical Chemistry, 62, 570–573.He, Y., Li, X. L., & Shao, Y. N. (2006). Discrimination of varieties of apple using near infrared spectra based on principal component analysis and artificial neural network model. Spectroscopy and Spectral Analysis, 26, 850–853.Hernández, A., He, Y., & García, A. (2006). Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77, 313–319.Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. Journal of Food Engineering, 87(3), 303–313.Huang, L., Wu, D., Jin, H., Zhang, J., He, Y., & Lou, C. (2011). Internal quality determination of fruit with bumpy surface using visible and near infrared spectroscopy and chemometrics: a case study with mulberry fruit. Biosystems Engineering, 109(4), 377–384.Iglesias, I. (2013). Peach production in Spain: current situation and trends, from production to consumption. Proceedings of the 4th Conference, Innovation in Fruit Growing, 75–96. D. Milatovic (Ed), Serbia (Belgrad)Iglesias, I., & Echeverría, G. (2009). Differential effect of cultivar and harvest date on nectarine colour, quality and consumer acceptance. Scientia Horticulturae, 120, 41–50.Jaiswal, P., Jha, S. N., & Bharadwaj, R. (2012). Non-destructive prediction of quality of intact banana using spectroscopy. Scientia Horticulturae, 135, 14–22.Kamruzzaman, M., ElMasry, G., Sun, D., & Allen, P. (2012). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innovate Food Science and Emerging Technologies, 16, 218–226.Kozak, M., & Scaman, C. H. (2008). Unsupervised classification methods in food sciences: discussion and outlook. Journal of the Science of Food and Agriculture, 88, 1115–1127.Lichtenthaler, H.K. & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, pp. F.4.3.1–F.4.3.8. Wiley, New York.Liu, Y., Chen, X., & Ouyang, A. (2008). Nondestructive determination of pear internal quality indices by visible and near infrared spectrometry. LWT - Food Science and Technology, 41, 1720–1725.Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technology, 5, 1121–1142.Lorente, D., Escandell-Montero, P., Cubero, S., Gómez-Sanchis, J., & Blasco, J. (2015). Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. Journal of Food Engineering, 163, 17–21.Lu, R. (2004). Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technology, 31(2), 147–157.Ma, G., Fu, X. P., Zhou, Y., Ying, Y. B., Xu, H. R., Xie, L. J., & Lin, T. (2007). Nondestructive sugar content determination of peaches by using near infrared spectroscopy technique. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 27(5), 907–910.Magwaza, L. S., Opara, L. U., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2012). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology, 5, 425–444.Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75, 394–404.Martins, P. A., Cirino de Carvalho, L., Cunha, L. C., Manhas, F., & Teixeira, G. H. (2016). Robust PLS models for soluble solids content and firmness determination in low chilling peach using near infrared spectroscopy (NIR). Postharvest Biology and Technology, 111, 345–351.McGlone, V. A., & Kawano, S. (1998). Firmness, dry-matter and soluble-solids assessment of post-harvest kiwifruit by NIR spectroscopy. Postharvest Biology and Technology, 13, 131–141.Merzlyak, M. N., Solo, A. E., & Gitelson, A. A. (2003). Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biology and Technology, 27, 197–211.Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, I. K., & Lammertyn, J. (2007). Non-destructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology, 46, 99–118.Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Practical NIR spectroscopy with applications in food and beverage analysis (2nd ed.pp. 123–132). Burnt Mill, Harlow, Essex, England: Longman Group.Padilla-Zakour, O. I. (2009). Good manufacturing practices. In N. Heredia, I. Wesley, & S. Garcia (Eds.), Microbiologically safe foods (pp. 395–415). New York: John Wiley and Sons Inc..Peiris, K. H. S., Dull, G. G., Leffler, R. G., & Kays, S. J. (1998). Near-infrared spectrometric method for nondestructive determination of soluble solids content of peaches. Journal of the American Society for Horticultural Science, 123(5), 898–905.Pérez-Marín, D., Sánchez, M. T., Paz, P., González-Dugo, V., & Soriano, M. A. (2011). Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIR-spectroscopy. Food Science and Technology, 44, 1405–1414.Ravaglia, G., Sansavini, S., Ventura, M., & Tabanelli, D. (1996). Indici di maturazione e miglioramento cualitativo delle pesche. Revista di Frutticoltura, 3, 61–66.Reita, G., Peano, C., Saranwong, S., & Kawano, S. (2008). An evaluating technique for variety compatibility of fruit applied to a near infrared Brix calibration system: a case study using Brix calibration for nectarines. Journal of Near Infrared Spectroscopy, 16(2), 83–89.Rodriguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44, 250–258.Sádecká, J., Jakubíková, M., Májek, P., & Kleinová, A. (2016). Classification of plum spirit drinks by synchronous fluorescence spectroscopy. Food Chemistry, 196, 783–790.Sánchez, M. T., De la Haba, M. J., Guerrero, J. E., Garrido-Varo, A., & Pérez-Marín, D. (2011). Testing of a local approach for the prediction of quality parameters in intact nectarines using a portable NIRS instrument. Postharvest Biology and Technology, 60(2), 130–135.Santos, P., Santos, F., Santos, J., & Bezerra, H. (2013). Application of extended multiplicative signal correction to short-wavelength near infrared spectra of moisture in marzipan. Journal of Data Analysis and Information Processing, 1, 30–34.Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified squares procedures. Analytical Chemistry, 36, 1627–1639.Shao, Y., He, Y., Gómez, A. H., Pereir, A. G., Qiu, Z., & Zhang, Y. (2007). Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’ (Lycopersicum esculentum) quality characteristics. Journal of Food Engineering, 81(4), 672–678.Singh, Z., Singh, R. K., Sane, V. A., & Nath, P. (2013). Mango—postharvest biology and biotechnology. Critical Reviews in Plant Sciences, 32(4), 217–236.Soares, S. F. C., Gomes, A. A., Galvão Filho, A. R., Araújo, M. C. U., & Galvão, R. K. H. (2013). The successive projections algorithm. Trends in Analytical Chemistry, 42, 84–98.Tijskens, L. M. M., Zerbini, P. E., Schouten, R. E., Vanoli, M., Jacob, S., Grassi, M., & Torricelli, A. (2007). Assessing harvest maturity in nectarines. Postharvest Biology and Technology, 45, 204–213.Valero, A., Marín, S., Ramos, A. J., & Sanchis, V. (2007). Effect of preharvest fungicides and interacting fungi on Aspergillus carbonarius growth and ochratoxin A synthesis in dehydrating grapes. Letters in Applied Microbiology, 45, 194–199.Walsh, K. B., Golic, M., & Greensill, C. V. (2004). Sorting of fruit and vegetables using near infrared spectroscopy: application to soluble solids and dry matter content. Journal of Near Infrared Spectroscopy, 12, 141–148.Williams, P. C. & Norris, K. H. (1987). Qualitative applications of near infrared reflectance spectroscopy. P. C. Williams & K. H. Norris (Eds.), Near infrared technology in the agricultural and food industries, pp. 241–246. St. Paul, MN: American Association of Cereal Chemist

    Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review

    Full text link
    [EN] Background: The increasing demand for quality assurance in agro-food production requires sophisticated analytical methods for in-line quality control. One of these techniques is visible and near-infrared (VIS-NIR) spectroscopy, which has low running costs, does not need sample preparation, and is non-destructive, environmentally friendly, and fast. Despite these advantages, only a limited amount of research has been conducted on VIS-NIR in-line applications to measure, control, and predict quality in fruits and vegetables. Scope and approach: The applicability of VIS-NIR spectroscopy for the off-line and in-line monitoring of quality in postharvest products has been addressed in this review. The document focuses on the comparison between the two processes for the same agro-food product, highlighting the main advantages and disadvantages, problems, solutions, and differences. Key findings and conclusions: VIS-NIR techniques, combined with chemometric methods, have shown great potential due to their fast detection speed, and the possibility of simultaneously predicting multiple quality parameters or distinguishing between products according to the objectives. Being able to automate processes is a great advantage compared to routine off-line analyses, mainly due to the savings achieved in time, material, and personnel. However, in numerous cases, in-line implementation has not been accomplished in the corresponding studies, hence the scarcity of real in-line applications. Recent demands, together with the advances being made in the technology and a reduction in the price of equipment, makes VIS-NIR technology an analytical alternative for continuous real-time food quality controls, which will become predominant in the next few years.This work was partially funded by INIA and FEDER funds through research project RTA2015-00078-00-00.Victoria Cortés López thanks the Spanish Ministry of Education, Culture and Sports for the FPU grant (FPU13/04202).Cortes-Lopez, V.; Blasco Ivars, J.; Aleixos Borrás, MN.; Cubero-García, S.; Talens Oliag, P. (2019). Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science & Technology. 85:138-148. https://doi.org/10.1016/j.tifs.2019.01.015S1381488

    Use of hyperspectral transmittance imaging to evaluate the internal quality of nectarines

    Full text link
    [EN] The internal quality of nectarines (Prunus persica L. Batsch var. nucipersica) cv. 'Big Top' (yellow flesh) and 'Magique' (white flesh) has been inspected using hyperspectral transmittance imaging. Hyperspectral images of intact fruits were acquired in the spectral range of 630-900 nm using transmittance mode during their ripening under controlled conditions. The detection of split pit disorder and classification according to an established firmness threshold were performed using PLS-DA. The prediction of the Internal Quality Index (IQI) related to ripeness was performed using PLS-R. The most important variables were selected using interval-PLS. As a result, an accuracy of 94.7% was obtained in the detection of fruits with split pit of the 'Big Top' cultivar. Accuracies of 95.7% and 94.6% were achieved in the classification of the 'Big Top' and 'Magique' cultivars, respectively, according to the firmness threshold. The internal quality was predicted through the IQI with R-2 values of 0.88 and 0.86 for the two cultivars. The results obtained indicate the great potential of hyperspectral transmittance imaging for the assessment of the internal quality of intact nectarines.This work was partially funded by INIA and FEDER funds through project RTA2015-00078-00-00. Sandra Munera thanks INIA for the FPI-INIA grant num. 43 (CPR2014-0082), partially supported by European Union FSE funds.Munera, S.; Blasco Ivars, J.; Amigo, J.; Cubero-García, S.; Talens Oliag, P.; Aleixos Borrás, MN. (2019). Use of hyperspectral transmittance imaging to evaluate the internal quality of nectarines. Biosystems Engineering. 182:54-64. https://doi.org/10.1016/j.biosystemseng.2019.04.001S546418

    Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest - A review

    Full text link
    [EN] Computer vision systems are becoming a scientific but also a commercial tool for food quality assessment. In the field, these systems can be used to predict yield, as well as for robotic harvesting or the early detection of potentially dangerous diseases. In postharvest handling, it is mostly used for the automated inspection of the external quality of the fruits and for sorting them into commercial categories at very high speed. More recently, the use of hyperspectral imaging is allowing not only the detection of defects in the skin of the fruits but also their association to certain diseases of particular importance. In the research works that use this technology, wavelengths that play a significant role in detecting some of these dangerous diseases are found, leading to the development of multispectral imaging systems that can be used in industry. This article reviews recent works that use colour and non-standard computer vision systems for the automated inspection of citrus. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of internal and external features of these fruits. Particular attention is paid to inspection for the early detection of some dangerous diseases like citrus canker, black spot, decay or citrus Huanglongbing.This work was supported by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) through projects RTA2012-00062-C04-01 and RTA2012-00062-C04-03 with the support of European FEDER funds. The authors would like to thank and acknowledge the contributions that were made by all the students, postdocs, technicians and visiting scholars in the Precision Agriculture Laboratory at the University of Florida and the Computer Vision Laboratory at the Agricultural Engineering Centre of IVIA.Cubero García, S.; Lee, WS.; Aleixos Borrás, MN.; Albert Gil, FE.; Blasco Ivars, J. (2016). Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest - A review. Food and Bioprocess Technology. 9(10):1623-1639. https://doi.org/10.1007/s11947-016-1767-1S16231639910Adebayo, S. E., Hashim, N., Abdan, K., & Hanafi, M. (2016). Application and potential of backscattering imaging techniques in agricultural and food processing—a review. Journal of Food Engineering, 169, 155–164.Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121–137.Annamalai, P., & Lee, W. S. (2003). Citrus yield mapping system using machine vision. ASAE Paper No. 031002. St. Joseph: ASAE.Annamalai, P., & Lee, W. S. (2004). Identification of green citrus fruits using spectral characteristics. ASAE Paper No. FL04–1001. St. Joseph: ASAE.Balasundaram, D., Burks, T. F., Bulanon, D. M., Schubert, T., & Lee, W. S. (2009). Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit. Postharvest Biology and Technology, 51, 220–226.Bansal, R., Lee, W. S., & Satish, S. (2013). Green citrus detection using fast Fourier transform (FFT) leakage. Precision Agriculture, 14(1), 59–70.Barreiro, P., Zheng, C., Sun, D.-W., Hernández-Sánchez, N., Pérez-Sánchez, J. M., & Ruiz-Cabello, J. (2008). Non-destructive seed detection in mandarins: comparison of automatic threshold methods in FLASH and COMSPIRA MRIs. Postharvest Biology and Technology, 47, 189–198.Basavaprasad, B., & Ravi, M. (2014). A comparative study on classification of image segmentation methods with a focus on graph based techniques. International Journal of Research in Engineering and Technology, 3, 310–315.Birth, G. S. (1976). How light interacts with foods. In: Gafney J.Jr.(Ed.), Quality detection in foods (pp. 6–11). St. Joseph: ASAE.Blanc, P.G.R., Blasco, J., Moltó, E., Gómez-Sanchis, J., & Cubero, S. (2010) System for the automatic selective separation of rotten citrus fruits. Patent number EP2133157 A1 CN101678405A, EP2133157A4, EP2133157B1, US20100121484Blasco, J., Aleixos, N., & Moltó, E. (2007a). Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm. Journal of Food Engineering, 81(3), 535–543.Blasco, J., Aleixos, N., Gómez, J., & Moltó, E. (2007b). Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering, 83(3), 384–393.Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009). Recognition and classification of external skin damages in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103(2), 137–145.Blasco, J., Cubero, S., & Moltó, E. (2016). Quality evaluation of citrus fruits. In D.-W. Sun (Ed.), Computer vision technology for food quality evaluation (2nd ed.). San Diego: Academic Press.Bulanon, D. M., Burks, T. F., & Alchanatis, V. (2009). Image fusion of visible and thermal images for fruit detection. Biosystems Engineering, 103, 12–22.Bulanon, D.M., Burks, T.F., Kim, D.G., & Ritenour, M.A. (2013). Citrus black spot detection using hyperspectral image analysis. Agricultural Engineering International: CIGR Journal, 15,(3)171.Burks, T. F., Villegas, F., Hannan, M. W., & Flood, S. (2003). Engineering and horticultural aspects of robotic fruit harvesting: opportunities and constraints. HortTechnology, 15(1), 79–87.Campbell, B. L., Nelson, R. G., Ebel, R. C., Dozier, W. A., Adrian, J. L., & Hockema, B. R. (2004). Fruit quality characteristics that affect consumer preferences for Satsuma mandarins. Hortscience, 39(7), 1664–1669.Chinchuluun, R., Lee, W. S., & Ehsani, R. (2009). Machine vision system for determining citrus count and size on a canopy shake and catch harvester. Applied Engineering in Agriculture, 25(4), 451–458.Choi, D., Lee, W. S., Ehsani, R., & Roka, F. M. (2015). A machine vision system for quantification of citrus fruit dropped on the ground under the canopy. Transactions of the ASABE, 58(4), 933–946.Codex Alimentarius, (2011). Codex standard for oranges. Available at: http://www.codexalimentarius.org/download/standards/10372/CXS_245e.pdf . Accessed March 2016Cubero, S., Aleixos, N., Albert, A., Torregrosa, A., Ortiz, C., García-Navarrete, O., & Blasco, J. (2014a). Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform. Precision Agriculture, 15(1), 80–94.Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504.Cubero, S., Diago, M. P., Blasco, J., Tardáguila, J., Millán, B., & Aleixos, N. (2014b). A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosystems Engineering, 117, 62–72.Dong, C.-W., Ye, Y., Zhang, J.-Q., Zhu, H.-K., & Liu, F. (2014). Detection of thrips defect on green-peel citrus using hyperspectral imaging technology combining PCA and B-Spline lighting correction method. Journal of Integrative Agriculture, 13(10), 2229–2235.FAOSTAT (2012). URL: http://faostat.fao.org http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Citrus/Documents/CITRUS_BULLETIN_2012.pdf . Accessed March 2016.Farrell, T. J., Patterson, M. S., & Wilson, B. (1992). A diffusion-theory model of spatially resolved steady-state diffuse reflectance for the noninvasive determination of tissue optical-properties in vivo. Medical Physics, 19, 879–888.Flood, S. J., Burks, T. F., & Teixeira, A. A. (2006). Physical properties of oranges in response to applied gripping forces for robotic harvesting. Transactions of ASAE, 49(2), 341–346.Gaffney, J. J. (1973). Reflectance properties of citrus fruit. Transactions of ASAE, 16(2), 310–314.Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing infected citrus trees. Computers and Electronics in Agriculture, 91, 106–115.Gómez, J., Blasco, J., Moltó, E., & Camps-Valls, G. (2007). Hyperspectral detection of citrus damage with a Mahalanobis kernel classifier. Electronics Letters, 43(20), 1082–1084.Gómez-Sanchis, J., Blasco, J., Soria-Olivas, E., Lorente, D., Escandell-Montero, P., Martínez-Martínez, J. M., Martínez-Sober, M., & Aleixos, N. (2013). Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers. Postharvest Biology and Technology, 82, 76–86.Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., & Blasco, J. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86.Gómez-Sanchis, J., Lorente, D., Soria-Olivas, E., Aleixos, N., Cubero, S., & Blasco, J. (2014). Development of a hyperspectral computer vision system based on two liquid crystal tuneable filters for fruit inspection. Application to detect citrus fruits decay. Food and Bioprocess Technology, 7, 1047–1056.Gómez-Sanchis, J., Martín-Guerrero, J. D., Soria-Olivas, E., Martínez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780–785.Gong, A., Yu, J., He, Y., & Qiu, Z. (2013). Citrus yield estimation based on images processed by an android mobile phone. Biosystems Engineering, 115, 162–170.Gottwald, T. R., Graham, J. H., & Schubert, T. S. (2002). Citrus canker: the pathogen and its impact. Plant Health Progress. doi: 10.1094/PHP-2002-0812-01-RV.Hannan, M., Burks, T. F., & Bulanon, D.M. (2009). A machine vision algorithm for orange fruit detection. The CIGR Ejournal. Manuscript 1281. Vol XI. December 2009.Harrell, R. C., Adsit, P. D., & Slaughter, D. C. (1985). Real-time vision-servoing of a robotic tree-fruit harvester. ASAE Paper No (pp. 85–3550). St. Joseph: ASAE.Hernández-Sánchez, N., Barreiro, P., & Ruiz-Cabello, J. (2006). On-line identification of seeds in mandarins with magnetic resonance imaging. Biosystems Engineering, 95, 529–536.Holmes, G. J., & Eckert, J. W. (1999). Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology, 89(9), 716–721.Iqbal, S. M., Gopal, A., Sankaranarayanan, P. E., & Nair, A. B. (2016). Classification of selected citrus fruits based on color using machine vision system. International Journal of Food Properties, 19, 272–288.Jackson, J. E. (1991). A user’s guide to principal components. New York: Wiley.Jafari, A., Fazayeli, A., & Zarezadeh, M. R. (2014). Estimation of orange skin thickness based on visual texture coarseness. Biosystems Engineering, 117, 73–82.Jiménez-Cuesta, M. J., Cuquerella, J., & Martínez-Jávega, J. M. (1981). Determination of a color index for citrus fruit degreening. In Proceedings of the International Society of Citriculture, 2, 750–753.Kim, D. G., Burks, T. F., Qin, J., & Bulanon, D. M. (2009). Classification of grapefruit peel diseases using color texture feature analysis. International Journal of Agricultural and Biological Engineering, 2, 41–50.Kim, D. G., Burks, T. F., Ritenour, M. A., & Qin, J. (2014). Citrus black spot detection using hyperspectral imaging. International Journal of Agricultural and Biological Engineering, 7, 20–27.Kohno, Y., Kondo, N., Iida, M., Kurita, M., Shiigi, T., Ogawa, Y., Kaichi, T., & Okamoto, S. (2011). Development of a mobile grading machine for citrus fruit. Engineering in Agriculture, Environment and Food, 4, 7–11.Kondo, N., Kuramoto, M., Shimizu, H., Ogawa, Y., Kurita, M., Nishizu, T., Chong, V. K., & Yamamoto, K. (2009). Identification of fluorescent substance in mandarin orange skin for machine vision system to detect rotten citrus fruits. Engineering in Agriculture, Environment and Food, 2, 54–59.Kurita, M., Kondo, N., Shimizu, H., Ling, P. P., Falzea, P. D., Shiigi, T., Ninomiya, K., Nishizu, T., & Yamamoto, K. (2009). A double image acquisition system with visible and UV LEDs for citrus fruit. Journal of Robotics and Mechatronics, 21, 533–540.Kurtulmus, F., Lee, W. S., & Vardar, A. (2011). Green citrus detection using eigenfruit, color and circular Gabor texture features under natural outdoor conditions. Computers and Electronics in Agriculture, 78(2), 140–149.Ladaniya, M. S. (2010). Citrus fruit: biology, technology and evaluation. San Diego: Academic Press.Li, H., Lee, W. S., & Wang, K. (2016). Immature green citrus fruit detection and counting based on fast normalized cross correlation (FNCC) using natural outdoor colour images. Precision Agriculture. doi: 10.1007/s11119-016-9443-z.Li, H., Lee, W. S., Wang, K., Ehsani, R., & Yang, C. (2014). Extended spectral angle mapping (ESAM) for citrus greening disease detection using airborne hyperspectral imaging. Precision Agriculture, 15, 162–183.Li, J., Rao, X., & Ying, Y. (2011). Detection of common defects on oranges using hyperspectral reflectance imaging. Computers and Electronics in Agriculture, 78, 38–48.Li, J., Rao, X., & Ying, Y. (2012a). Development of algorithms for detecting citrus canker based on hyperspectral reflectance imaging. Journal of the Science of Food and Agriculture, 92, 125–134.Li, J., Rao, X., Wang, F., Wu, W., & Ying, Y. (2013). Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods. Postharvest Biology and Technology, 82, 59–69.Li, J., Rao, X., Ying, Y., & Wang, D. (2010). Detection of navel oranges canker based on hyperspectral imaging technology. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 26, 222–228.Li, X., Lee, W. S., Li, M., Ehsani, R., Mishra, A., Yang, C., & Mangan, R. (2012b). Spectral difference analysis and airborne imaging classification for citrus greening infected trees. Computers and Electronics in Agriculture, 83, 32–46.Li, X., Lee, W. S., Li, M., Ehsani, R., Mishra, A. R., Yang, C., & Mangan, R. L. (2015). Feasibility study on Huanglongbing (citrus greening) detection based on WorldView-2 satellite imagery. Biosystems Engineering, 132, 28–38.Lopes, L. B., VanDeWall, H., Li, H. T., Venugopal, V., Li, H. K., Naydin, S., Hosmer, J., Levendusky, M., Zheng, H., Bentley, M. V., Levin, R., & Hass, M. A. (2010). Topical delivery of lycopene using microemulsions: enhanced skin penetration and tissue antioxidant activity. Journal of Pharmaceutical Sciences, 99, 1346–1357.López, J. J., Cobos, M., & Aguilera, E. (2011). Computer-based detection and classification of flaws in citrus fruits. Neural Computing and Applications, 20, 975–981.López-García, F., Andreu, G., Blasco, J., Aleixos, N., & Valiente, J. M. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture, 71, 189–197.Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2013a). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology, 6(2), 530–541.Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142.Lorente, D., Blasco, J., Serrano, A. J., Soria-Olivas, E., Aleixos, N., & Gómez-Sanchis, J. (2013b). Comparison of ROC feature selection method for the detection of decay in citrus fruit using hyperspectral images. Food and Bioprocess Technology, 6(12), 3613–3619.Lorente, D., Zude, M., Regen, C., Palou, L., Gómez-Sanchis, J., & Blasco, J. (2013c). Early decay detection in citrus fruit using laser-light backscattering imaging. Postharvest Biology and Technology, 86, 424–430.Lorente, D., Zude, M., Idler, C., Gómez-Sanchis, J., & Blasco, J. (2015). Laser-light backscattering imaging for early decay detection in citrus fruit using both a statistical and a physical model. Journal of Food Engineering, 154, 76–85.Maf Industries. (2016). VIOTEC brochure. http://mafindustries.com/wp-content/uploads/2015/02/viotec3.pdf . Accessed March 2016.Magwaza, L. S., Opara, U. L., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2012). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology, 5(2), 425–444.Mehta, S. S., & Burks, T. F. (2014). Vision-based control of robotic manipulator for citrus harvesting. Computers and Electronics in Agriculture, 102, 146–158.Moltó, E., Blasco, J., & Gómez-Sanchis, J. (2010). Analysis of hyperspectral images of citrus fruits. In D.-W. Sun (Ed.), Hyperspectral imaging for food quality analysis and control (pp. 321–348). California: Academic Press.Moltó, E., Plá, F., & Juste, F. (1992). Vision systems for the location of citrus fruit in a tree canopy. Journal of Agricultural Engineering Research, 52, 101–110.Momin, A., Kondo, N., Kuramoto, M., Ogawa, Y., Yamamoto, K., & Shiigi, T. (2012). Investigation of excitation wavelength for fluorescence emission of citrus peels based on UV-VIS spectra. Engineering in Agriculture, Environment and Food, 5, 126–132.Momin, A., Kondo, N., Ogawa, Y., Ido, K., & Ninomiya, K. (2013b). Patterns of fluorescence associated with citrus peel defects. Engineering in Agriculture, Environment and Food, 6, 54–60.Momin, A., Kuramoto, M., Kondo, N., Ido, K., Ogawa, Y., Shiigi, T., & Ahmad, U. (2013a). Identification of UV-fluorescence components for detecting peel defects of lemon and yuzu using machine vision. Engineering in Agriculture, Environment and Food, 6, 165–171.Morgan, S. P., & Stockford, I. M. (2003). Surface-reflection elimination in polarization imaging of superficial tissue. Optics Letters, 28, 114–116.Niphadkar, N. P., Burks, T. F., Qin, J., & Ritenour, M. (2013b). Edge effect compensation for citrus canker lesion detection due to light source variation—a hyperspectral imaging application. Agricultural Engineering International: CIGR Journal, 15, 314–327.Niphadkar, N. P., Burks, T. F., Qin, J. W., & Ritenour, M. A. (2013a). Estimation of citrus canker lesion size using hyperspectral reflectance imaging. International Journal of Agricultural and Biological Engineering, 6, 41–51.Obenland, D., Margosan, D., Smilanick, J. L., & Mackey, B. (2010). Ultraviolet fluorescence to identify navel oranges with poor peel quality and decay. HortTechnology, 20, 991–995.Ogawa, Y., Abdul, M. M., Kuramoto, M., Kohno, Y., Shiigi, T., Yamamoto, K., & Kondo, K. (2011). Rotten part detection on citrus fruit surfaces by use of fluorescent images. The Review of Laser Engineering, 394, 255–261.Okamoto, H., & Lee, W. S. (2009). Green citrus detection using hyperspectral imaging. Computers and Electronics in Agriculture, 66(2), 201–208.Omid, M., Khojastehnazhand, M., & Tabatabaeefar, A. (2010). Estimating volume and mass of citrus fruits by image processing technique. Journal of Food Engineering, 100, 315–321.Ottavian, M., Barolo, M., & García-Muñoz, S. (2013). Maintenance of machine vision systems for product quality assessment. Part I. Addressing changes in lighting conditions. Industrial & Engineering Chemistry Research, 52, 12309–12318.Ottavian, M., Barolo, M., & García-Muñoz, S. (2014). Maintenance of machine vision systems for product quality assessment. Part II. Addressing camera replacement. Industrial & Engineering Chemistry Research, 53, 1529–1536.Palou, L. (2014). Penicillium digitatum, Penicillium italicum (green mold, blue mold). In S. Bautista-Baños (Ed.), Postharvest decay. Control strategies. London: Elsevier.Palou, L., Smilanick, J. L., Montesinos-Herrero, C., Valencia-Chamorro, S., & Pérez-Gago, M. B. (2011). Novel approaches for postharvest preservation of fresh citrus fruits. In Slaker (Ed.), Citrus fruits: properties, consumption and nutrition. New York: Nova Science Publishers, Inc..Pongnumkul, S., Chaovalit, P., & Surasvadi, N. (2015). Applications of smartphone-based sensors in agriculture: a systematic review of research. Journal of Sensors, Open Access Article ID 195308.Pourreza, A., Lee, W. S., Ehsani, R., Schueller, J. K., & Raveh, E. (2015a). An optimum method for real-time in-field detection of Huanglongbing disease using a vision sensor. Computers and Electronics in Agriculture, 110, 221–232.Pourreza, A., Lee, W. S., Etxeberria, E., & Banerjee, A. (2015b). An evaluation of a vision based sensor performance in Huanglongbing disease identification. Biosystems Engineering, 130, 13–22.Qin, J., Burks, T. F., Kim, M. S., Chao, K., & Ritenour, M. A. (2008). Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sensing and Instrumentation for Food Quality and Safety, 2(3), 168–177.Qin, J., Burks, T. F., Ritenour, M. A., & Gordon Bonn, W. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93, 183–191.Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2011). Multispectral detection of citrus canker using hyperspectral band selection. Transactions of the ASABE, 54, 2331–2341.Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2012). Development of a two-band spectral imaging system for real-time citrus canker detection. Journal of Food Engineering, 108, 87–93.Sengupta, S., & Lee, W. S. (2014). Identification and determination of the number of immature green citrus fruit under different ambient light conditions.
    corecore